Crystallization of α-Fe phase in amorphous Fe$_{81}$B$_{13}$Si$_4$C$_2$ alloy

D.M. Minića, A. Maričićb, B. Adnađevića

a Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12, 11 000 Belgrade, Serbia
b Technical Faculty Cačak, University in Kragujevac, Serbia

A R T I C L E I N F O

Article history:
Received 12 April 2008
Received in revised form 20 May 2008
Accepted 23 May 2008
Available online 3 July 2008

Keywords:
Amorphous materials
Metallic glasses
Metals and alloys
Phase transition
Thermal analysis

A B S T R A C T

The crystallization kinetics of α-Fe from the amorphous Fe$_{81}$B$_{13}$Si$_4$C$_2$ alloy was investigated by DSC and XRD methods. The kinetic parameters ($\ln A$, E_a) of the investigated process were determined using Kissinger’s as well as isoconversional (model-free) method. Based on the results of DSC and XRD analysis and calculated crystallization parameters ($n=4$; $m=3$) it was concluded that primary crystallization of α-Fe phase in amorphous matrix occurs through the bulk nucleation and three-dimensional growth of nuclei growing with constant rate.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The amorphous alloys (metallic glasses) are a relatively new class of materials with a specific combination of properties which are very interesting from technological point of view. These materials are characterized by structure with absence of the distant order atom arrangement and characterized by high degree of anisotropy of physical properties [1,2].

The amorphous state of matter is, however, structurally and thermodynamically unstable and very susceptible to partial or complete crystallization during thermal treatment or non-isothermal compacting [3]. The crucial limitation with respect to using metallic glasses for high temperature applications arises from their restricted thermal stability. The onset of exothermic crystallization upon crossing the stability domain of the glassy state results in the formation of highly stable, but brittle intermetallic compounds, which renders these alloys useful only once. Further, for amorphous alloys that exhibit excellent magnetic properties the crystallization represents the limit at which these properties begin to deteriorate. For the case alloys that exhibit excellent magnetic properties in the two-phase nanocrystal-amorphous matrix structure, control of the crystallization kinetics allows the ability to tailor the desired structure. The latter imposes the knowledge of alloys stability in a broad range of temperature due to different crystallization processes which occur during its annealing [4].

Among these materials the amorphous alloys of Fe and B, have been very interesting because of their soft ferromagnetic properties with a high saturation magnetic flux density. These alloys are applicable in a variety of devices, including transformers, magnetic tapes and recorder heads [5–7]. It was determined that the Curie temperature of alloys increases slightly on replacement of boron by silicon [8]. This results in a sharp increase of relatively constant room-temperature saturation magnetization extending from Fe$_{80}$B$_{20}$ to Fe$_{82}$B$_{12}$Si$_6$. The multicomponent alloys are generally easier to prepare in the amorphous state than the binary ones. So, it was concluded that the Curie temperature of alloys increases slightly on replacement of boron by silicon [8]. This results in a sharp increase of relatively constant room-temperature saturation magnetization extending from Fe$_{80}$B$_{20}$ to Fe$_{82}$B$_{12}$Si$_6$. The multicomponent alloys Fe$_{81}$B$_{13}$Si$_4$C$_2$ and Fe$_{82}$B$_{12}$Si$_6$ are preferred [8]. It was also shown that the soft magnetic properties of Fe–B alloy are improved by a decrease of the α-Fe grain size from 20 to 10 nm [9].

The crystallization of amorphous alloys upon heating can be performed in several ways. In calorimetric measurements, two basic methods are in use, isothermal and non-isothermal. The results of crystallization process can be considered in terms of several theoretical models [10]. The investigation of kinetics of the crystallization showed that the crystallization process of amorphous Fe$_{82}$B$_{17}$ is governed by a bulk growth in two dimensions ($n=2$) [11]. However, the investigation of the crystallization kinetics of...
amorphous alloy Fe₈₁B₁₃.₅Si₃.₅C₂ showed three exothermal peaks on DSC curves showing that the crystallization process includes formation more than one phase. The isothermal annealing at T > 780 K leads to the appearing of crystalline phases α-Fe and Fe₂B in the mentioned alloy but the further increase of annealed temperature leads to appearance of metastable γ-Fe phase [12,13]. It was shown the diffusion controlled growth particles of appreciable initial volume and three-dimension growth of small particles [13]. The values of Avrami exponents \(n₁ = 1.6 \) and \(n₂ = 2.0 \) calculated for Fe₂B+γFeSi are characteristic for the diffusion-controlled growth of small particles with decreasing nucleation rate. Atomic rearrangement and amorphous-to-crystalline transformations during isothermal annealing have been investigated by Mössbauer spectroscopy [14]. It was shown that rearrangement in the amorphous state consists of two processes depending on the annealing temperature. The first process is attributed to the enhancement of the short-range order and the second one to the atomic rearrangement leading to crystallization. The crystallization was found to consist of at least two steps giving as the final crystalline products Fe₂B and Fe₃B.

Having in mind the influence of thermal stability and microstructure on the physicochemical properties of amorphous alloys as well as shown differences in kinetics of crystallization, in this work, the crystallization process of α-Fe from the Fe₈₁B₁₃Si₄C₂ alloy was investigated in detail from the kinetically point of view by using DSC and X-ray analysis.

2. Experimental procedure

The ribbon-shaped samples of Fe₂B₁₃Si₄C₂ amorphous alloy were obtained by using the standard procedure of rapid quenching of the melt on a rotating disc (melt-spinning). The obtained ribbon was 2 cm wide and 35 μm thick.

The crystallization process was investigated by the differential scanning calorimetry (DSC) in a nitrogen atmosphere using SHIMADZU DSC-50 analyzer. In this case, samples weighing several milligrams were heated in the DSC cell from the room temperature to 650 °C in a stream of nitrogen with nitrogen flowing at a rate of 20 mL min⁻¹. The X-ray powder diffraction (XRD) patterns were recorded for Fe₂B⁺γFeSi in a form of ribbon and C in a stream of nitrogen with nitrogen flowing at a rate of 10 mL min⁻¹. Silicon powder was used as an external standard for calibration of a diffractometer. All XRD measurements were done with solid samples in a form of ribbon at ambient temperature.

3. The methods used to evaluate the kinetic parameters of the investigated process

All kinetic studies assume that the isothermal rate of conversion \(\frac{dx}{dt} \), is a linear function of the temperature-dependent reaction rate constant, \(k(T) \), and a temperature-independent function of the reaction \(f(\alpha) \) [15]:

\[
\frac{dx}{dt} = k(T)f(\alpha),
\]

where \(\alpha \) is the fractional extent of reaction, \(t \) is the time and the function \(f(\alpha) \) depends on the particular crystallization mechanism.

According to Arrhenius’s equation:

\[
k(T) = A \exp \left(-\frac{E_a}{RT}\right),
\]

where \(A \) is the pre-exponential factor, that is assumed to be independent of temperature, \(E_a \) the apparent activation energy, \(T \) the absolute temperature and \(R \) is the gas constant, so the rate of conversion is

\[
\frac{dx}{dt} = A \exp \left(-\frac{E_a}{RT}\right) f(\alpha).
\]

For non-isothermal measurements at constant heating rate \(\beta = \frac{dT}{dt} \), \(t \) is the time, Eq. (3) transforms to

\[
\frac{dx}{dt} = A \exp \left(-\frac{E_a}{RT}\right) f(\alpha),
\]

where \(\frac{dx}{dt} = \beta(\frac{dx}{dT}) \).

The integral form of the reaction model can be obtained by integration of Eq. (4):

\[
g(\alpha) = \int_0^a \frac{dx}{f(\alpha)} = AE_a \frac{1}{RT} p(x)
\]

where \(p(x) \) is the temperature integral for \(x = E_a/RT \) which does not have analytical solution.

The apparent activation energy \(E_a \) can be calculated by various methods. The Kissinger’s method allows the calculation of apparent activation energy from a point \(T_p \) which is the temperature at the maximum DSC curve for different rates of heating [16]. Since the maximum rate of investigated process occurs when \((\frac{dx}{dT}) = 0 \), differentiation of Eq. (4) having in mind the general equation enabling the analysis of conversion kinetics for nucleation and growth of particles of new phase proposed by Avrami in the form \(f(\alpha) = (1 - \alpha)^n \), where \(n \) is the apparent reaction order, Kissinger’s relation was obtained:

\[
\ln \left(\frac{\beta}{T_p^2} \right) = \ln \left(\frac{AR}{E_a} \right) - \frac{E_a}{RT_p}.
\]

The second used method is rate-isosconvension method proposed by Friedman [17]. The basic assumption of method is that the reaction rate at a constant conversion value is only a function of temperature. This premise supposes possibility of determination of kinetic parameters, \(E_a \) and \(A \), for each value of \(\alpha \) over the entire reaction range. The method does not require any assumption on the \(f(\alpha) \) and it is also known as “model-free method”. The rate-isosconversion method was based on Eq. (4) in the logarithmic form:

\[
\ln \left[\beta \left(\frac{dx}{dT}\right)_\alpha \right] = \ln \left(Af(\alpha) - \frac{E_a}{RT}\right) - \frac{E_a}{RT}\alpha
\]

where a subscript \(\alpha \) designates values related to a given conversion, and \(i \) is a number of the non-isothermal experiment conducted at the heating rate \(\beta_i \). By plotting \(\ln[\beta_i(\frac{dx}{dT})_{\alpha,i}] \) against \(1/T_{\alpha,i} \), the value of the \(-E_a/R \) for a given value of \(\alpha \) can be directly obtained.

4. Results and discussion

Typical DSC curve obtained during heating and cooling cycle is presented in Fig. 1.

DSC curve (Fig. 1) involves series of endo- and exo-peaks indicating a stepwise process of structural stabilization of alloy in the temperature range 200–560 °C. A broad exo-peak, indicated as low temperature peak \((T_p^2) \) in temperature range 200–400 °C, is followed by endothermic hump (temperature of glass transition \(T_g \)) and a short supercooled liquid region before sharp exothermic crystallization peak \((T_c) \) in temperature range 500–560 °C (Fig. 2).

All values of initial \((T_i) \), maximal \((T_m) \) and final temperature \((T_f) \) for both exo-peaks are shifted to higher values with increasing heating rate indicating the presence of kinetic effects. The overall apparent activation energy for crystallization process, under linear heating condition was calculated by the Kissinger’s peak
Fig. 1. DSC curve of heating and cooling cycle; heating rate 10 °C/min.

Fig. 2. DSC curves at different heating rates.

Fig. 3. XRD patterns for as quenched and annealed alloy.

Fig. 4. The sigmoid shape of fractional conversion curves in Fig. 4 indicates crystallization in bulk amorphous material excluding the surface crystallization. For all heating rates, these curves show a slow initial period corresponding to dominant process of nucleation with increasing rate caused by increase of specific area of

method [16]. The values of peak temperatures together with values of kinetic parameters (Ea and lnA) calculated by Kissinger’s method and the symmetry factors (SFs) are given in Table 1.

The changes of structure in the temperature range (20–830 °C) were followed by X-ray diffraction method on as prepared as well as alloy annealed at different temperatures (Fig. 3).

X-ray diffraction pattern of the as-quenched ribbon shows only a broad halo at 2θ range of 40–55° suggesting an amorphous (glassy) structure. Diffraction patterns of alloy annealed at the temperatures of T ≤ 460 °C contain the same halo as well as the original sample but also contain one sharp peak at 2θ = 83.2° indicating presence of structural deformed crystal phase as consequence of ordering Fe-clusters already present in starting alloy. Increase of annealed temperature results in a decrease of intensity of this peak and appearance the new sharp peak at 2θ = 45.6° whose height increases with an increase of annealing temperature. The increase of intensity of that peak as well as a decrease of its half width indicates the increase of crystallinity of alloy. This shows that at higher temperature (above 500 °C) the process of crystallization occurs. Thoroughly studying of diffractograms by the comparative semi-qualitative analysis of annealed alloy (JCPDS-PDF 03-065-4899) gives evidence for the presence of α-Fe crystallization in annealed alloy. The disarranged ratio of peak intensities of diffractions lines indicates very deformed crystal structure whose disorder disappears with the increase of temperature of annealing according the ratio of height of diffraction peaks.

The detailed crystallization kinetics of α-Fe in the amorphous alloy was studied by differential scanning calorimetry in temperature range of 500–560 °C. The volume fraction (or degree of conversion, α) of the sample transformed into crystalline phase during the crystallization process has been obtained from the DSC curve as a function of temperature (T). The volume fraction crystallized, α, at any temperature T is given as α = Sf/S, where S is the total area of the exotherm between the temperature Tc, where the crystallization is just beginning and the temperature Tf, where the crystallization is completed, and Sf is the area between the initial temperature and a generic temperature, T, ranging between Tc and Tf [17]. The plots of α versus T at different heating rates for the considered crystallization process are shown in Fig. 4.

The sigmoid shape of fractional conversion curves in Fig. 4 indicates crystallization in bulk amorphous material excluding the surface crystallization. For all heating rates, these curves show a slow initial period corresponding to dominant process of nucleation with increasing rate caused by increase of specific area of
Fig. 4. Fractional conversion (α) as a function of temperature (T) for the crystallization alloy at different heating rates (5, 10, 20 and 30 K min⁻¹).

Fig. 5. The apparent activation energy \(E_a\) and intercept \(\ln[A_a(\alpha)]\) plotted as a function of fractional conversion (α).

Fig. 6. Differential rate curves \((da/dt)\) versus \(T\) at different heating rates \((\beta = 5, 10, 20\) and \(30\) K min⁻¹).

nuclei. The following part of saturation is the consequence of attaching nuclei causing the decrease of surface area.

It can be observed that the apparent activation energy for the considered crystallization process is practically constant in the \(0.2 < \alpha < 0.7\) range. Fig. 5, indicating the existence of a single-step reaction [15,18]. The average value of apparent activation energy was determined as \(E_a = 356.5 \pm 5.5\) kJ mol⁻¹. The activation energy of crystallization process proceeding through formation of nuclei and their growth, according to opinion of some researches, has no physical meaning but only empirical character and practically establishes only the dependence of the rate of conversion on temperature. This energy can be spent, not only for overcoming the activation barrier but also mainly for its downturn due to cooperative displacement plenty of atoms. Finely, the crystallization of amorphous alloys is a very complicated process accompanied by nucleation and growth of various crystal phases under continuously varied conditions of chemicals surroundings in a zone of conversion. Obviously, such a process occurs not only with the single value of activation energy and not by formation of a single configuration of activated complex. In practice, with the multitude of probable ways of conversions, only those mechanisms and activated complexes of the crystallization process will be realized that are the most probable at a given temperature. Any change of crystallization conditions, such as heating rate, can result in a change of the mechanism and main activation complex of the crystallization process. Thus high values of activation energy of crystallization of amorphous alloys, first of all, indicates that a lot of atoms participate in an elementary act of structure reorganization, as well as high complexity of these processes.

For the preliminary determination of kinetic model of the investigated crystallization process, Dollimore’s method was used [19–21]. This model is based on the “sharpness” of initial and final temperature of the differential rate curves as well as on its asymmetry. From the result of the theoretical considerations it is apparent that the “sharpness” of the initial and final temperatures is caused by kinetic factors, and especially by the mechanism of process. Certain kinetic models lead to an asymptotic or diffuse departure from the base line in a differential form thermal curve, while the others produce a very sharp approach to the final plateau. According to these parameters the authors listed three different types of kinetic mechanisms [21]. The investigation of these parameters that describe geometry and asymmetry of the differential rate curves it can be very simple to indicate the probable kinetic mechanism expressed as \(f(\alpha)\). So, when the crystallization process is not complex the qualitative approach to kinetic may be obtained using parameters such as \(\alpha_{\text{max}}\) or \((da/dt)_{\text{max}}\), the shape of the initial and final temperatures as well as peak temperature \((T_p)\), half-width from differential rate curves.

In our case, Dollimore’s procedure was applied on the conversion and differential rate curves whose asymmetry is observed between \(T_i\) and \(T_f\) for the differential rate curves (Fig. 6). The others parameters such as the conversion at the rate of maximum crystallization, \(\alpha_{\text{max}}\); peak temperature, \(T_p\); at \((da/dt)_{\text{max}}\); and the ratio \(\Delta LoT/\Delta HiT\) (shape factor), which is the ratio between the low-temperature at half-width and high-temperature at half-width of the differential rate curve peak, are presented in Table 2.

The dependence of \((da/dt)\) versus \(T\) at different heating rates for the investigated crystallization process of \(\alpha\)-Fe in the amorphous Fe₈₁B₁₃Si₄C₂ alloy is shown in Fig. 6. It is clearly seen that the position of the broadening exotherm, which is connected with the crystallization was shifted toward higher temperature with

<table>
<thead>
<tr>
<th>(\beta) (K/min)</th>
<th>(\alpha_{\text{max}})</th>
<th>(\Delta LoT/\Delta HiT)</th>
<th>Half-width (K)</th>
<th>(T_i)</th>
<th>(T_f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.51</td>
<td>1.0</td>
<td>9.5</td>
<td>Sharp</td>
<td>Sharp</td>
</tr>
<tr>
<td>10</td>
<td>0.53</td>
<td>1.0</td>
<td>9.5</td>
<td>Sharp</td>
<td>Sharp</td>
</tr>
<tr>
<td>20</td>
<td>0.53</td>
<td>0.9</td>
<td>10.0</td>
<td>Sharp</td>
<td>Sharp</td>
</tr>
<tr>
<td>30</td>
<td>0.55</td>
<td>0.8</td>
<td>11.0</td>
<td>Sharp</td>
<td>Sharp</td>
</tr>
</tbody>
</table>

Table 2 Parameters describing the asymmetry DSC curves of crystallization \(\alpha\)-Fe phase in amorphous Fe₈₁B₁₃Si₄C₂ alloy.
the increase of the heating rate as well as asymmetry of peaks. This suggests that the crystallization process should not be characterized by a definite critical temperature independent of the heating rate. The determined values of α_{max} for different heating rates were in the range from 0.51 to 0.55. These results indicate that the non-isothermal crystallization mechanism of α-Fe in amorphous Fe$_81$B$_{13}$Si$_4$C$_2$ alloy cannot be fully described within the JMA (Johnson–Mehl–Avrami) models (A2, A3 and A4, Group A) which predicated that, Johnson–Mehl–Avrami equation concerning the kinetics of phase transformation (models A1–A4) involving nucleation and growth crystals under isothermal conditions can be used in very limited number of crystallization processes in non-isothermal conditions when the process of nucleation is finished before starting the process of growth of nuclei.

The broadened exothermic peaks almost symmetrical (Fig. 6) indicate the occurrence of the overlapping reactions, probably nucleation and growth of nuclei which occur at same time. Therefore we decided to study further the crystallization kinetics as a whole, as it is a single crystallization peak.

For non-isothermal crystallization, where the volume fraction of crystalline phase α precipitated in glass heated at a uniform heating rate β is related with the activation energy E_a, Matusita et al. proposed the following relation [22–24]:

$$\ln[-\ln(1 - \alpha)] = -n \ln \beta - \frac{0.052mE_a}{RT} + \text{const}, \quad (8)$$

where m and n are constants having values between 1 and 4 depending on the morphology and kinetics of the growth nuclei (Table 3).

The values of n obtained from the slopes of linear plots $\ln[-\ln(1 - \alpha)]$ versus $-\ln \beta$ at different temperatures for considered crystallization process are given in Table 4.

Based on the obtained values of parameters m and n, at the different heating rates (Table 5), we asserted with high degree of reliability, that the nucleation process of α-Fe occurs within amorphous alloy with a constant rate. The growth of α-Fe crystallites occurs in three effective directions (three-dimensional growth) proceeding with constant nucleation rate.

5. Conclusions

By the annealing of amorphous Fe$_81$B$_{13}$Si$_4$C$_2$ alloy at temperatures $T \geq 773$ K, the crystallization process of α-Fe occurs in the bulk of the considered alloy. The nucleation process of α-Fe occurs within the amorphous phase with a constant rate. The growth of α-Fe crystallites is a three-dimensional and occurs with the relatively high value of apparent activation energy of 352.5 ± 5.5 kJ mol$^{-1}$.

Acknowledgements

The investigation was partially supported by the Ministry of Science and Environmental Protection of Serbia, under the following Projects 142011G and 142025.

References